4,372 research outputs found

    Turbulence and wind speed proïŹles for simulating the TMT AO performances

    Get PDF
    The site testing campaign of the Thirty Meter Telescope gathered an extensive amount of turbulence profiles. This data is modeled to describe the statistical characteristics of each site and act as "standard atmospheres" for use in AO simulations

    Orbital assembly and maintenance study

    Get PDF
    The requirements, conceptual design, tradeoffs, procedures, and techniques for orbital assembly of the support structure of the microwave power transmission system and the radio astronomy telescope are described. Thermal and stress analyses, packaging, alignment, and subsystems requirements are included along with manned vs. automated and transportation tradeoffs. Technical and operational concepts for the manned and automated maintenance of satellites were investigated and further developed results are presented

    Orbital assembly and maintenance study. Executive summary

    Get PDF
    A sound, practical approach for the assembly and maintenance of very large structures in space is presented. The methods and approaches for assembling two large structures are examined. The maintenance objectives include the investigation of methods to maintain five geosynchronous satellites. The two assembly examples are a 200-meter-diameter radio astronomy telescope and a 1,000-meter-diameter microwave power transmission system. The radio astronomy telescope operates at an 8,000-mile altitude and receives RF signals from space. The microwave power transmission system is part of a solar power satellite that will be used to transmit converted solar energy to microwave ground receivers. Illustrations are included

    Primary mirror dynamic disturbance models for TMT: vibration and wind

    Get PDF
    The principal dynamic disturbances acting on a telescope segmented primary mirror are unsteady wind pressure (turbulence) and narrowband vibration from rotating equipment. Understanding these disturbances is essential for the design of the segment support assembly (SSA), segment actuators, and primary mirror control system (M1CS). The wind disturbance is relatively low frequency, and is partially compensated by M1CS; the response depends on the control bandwidth and the quasi-static stiffness of the actuator and SSA. Equipment vibration is at frequencies higher than the M1CS bandwidth; the response depends on segment damping, and the proximity of segment support resonances to dominant vibration tones. We present here both disturbance models and parametric response. Wind modeling is informed by CFD and based on propagation of a von Karman pressure screen. The vibration model is informed by analysis of accelerometer and adaptive optics data from Keck. This information is extrapolated to TMT and applied to the telescope structural model to understand the response dependence on actuator design parameters in particular. Whether the vibration response or the wind response is larger depends on these design choices; "soft" (e.g. voice-coil) actuators provide better vibration reduction but require high servo bandwidth for wind rejection, while "hard" (e.g. piezo-electric) actuators provide good wind rejection but require damping to avoid excessive vibration transmission to the primary mirror segments. The results for both nominal and worst-case disturbances and design parameters are incorporated into the TMT actuator performance assessment

    The potential for circular dichroism as an additional facile and sensitive method of monitoring low-molecular-weight heparins and heparinoids

    Get PDF
    The ultraviolet circular dichroism (CD) spectra of commercial low-molecular-weight heparins, heparinoids and other anticoagulant preparations have been recorded between 180 and 260 nm. Principal component analysis of the spectra allowed their differentiation into a number of groups related to the means of their production reflecting the structural changes introduced by each process. The findings suggest that CD provides a complementary technique for the rapid analysis of heparin preparations

    Discovery of a cataclysmic variable with a sub-stellar companion

    Get PDF
    We find that the ROSAT source 1RXS J105010.3-140431 is a cataclysmic variable with orbital period of 88.6 minutes and a spectrum closely resembling WZ Sge. In particular, emission lines are flanked by Stark-broadened absorption wings probably originating in the photosphere of a compact object. The Balmer absorption lines can be modeled by the spectrum of a DA white dwarf with 13 000 <Teff<< T_{eff} < 24 000 K. The strong absorption lines allowed us to obtain direct radial velocities of the white dwarf using the cross-correlation technique. We find an extremely low white dwarf radial velocity half amplitude, KwdK_{wd} = 4 ±\pm 1 km s−1^{-1}. This is consistent with the upper limit obtained from the Hα\alpha emission line wing K < 20 km s−1^{-1}. The corresponding mass function is incompatible with a main sequence secondary, but is compatible with a post orbital period minimum cataclysmic variable with a brown dwarf-like secondary. The formal solution gives a secondary mass of 10-20 jovian masses. Doppler maps for the emission lines and the hypothesis of black-body emission indicate a steady state (T ∌r−3/4\sim r^{-3/4}) accretion disk mainly emitting in Hα\alpha and an optically thicker hotspot with a strong contribution to the higher order Balmer lines and \ion{He}{I} 5875. As in other long cycle length dwarf novae, evidence for inner disk removal is found from the analysis of the emission lines.Comment: 14 figures, 2 of them composed. Total 20 figures. Accepted for publication in Astronomy and Astrophysic
    • 

    corecore